

Welcome to steppy

API documentation

	Index

	Module Index

	Search Page

What is Steppy?

Steppy is a lightweight, open-source, Python 3 library for fast and
reproducible experimentation. It lets data scientist focus on data
science, not on software development issues. Steppy’s minimal interface
does not impose constraints, however, enables clean machine learning
pipeline design.

What problem steppy solves?

In the course of the project, data scientist faces multiple problems.
Difficulties with reproducibility and lack of the ability to prepare
experiments quickly are two particular examples. Steppy address both
problems by introducing two simple abstractions: Step and
Tranformer. We consider it minimal interface for building machine
learning pipelines.

Step is a wrapper over the transformer and handles multiple aspects
of the execution of the pipeline, such as saving intermediate results
(if needed), checkpoiting the model during training and much more.
Tranformer in turn, is purely computational, data scientist-defined
piece that takes an input data and produces some output data. Typical
Transformers are neural netowrk, machine learning algorithms and pre- or
post-processing routines.

Start using steppy

Installation

Steppy requires python3.5 or above.

pip3 install steppy

(you probably want to install it in
your virtualenv [https://virtualenv.pypa.io/en/stable])

Resources

	Documentation [https://steppy.readthedocs.io/en/latest]

	Source [https://github.com/minerva-ml/steppy]

	Bugs reports [https://github.com/minerva-ml/steppy/issues]

	Feature requests [https://github.com/minerva-ml/steppy/issues]

	Tutorial notebooks (their repository [https://github.com/minerva-ml/steppy-examples]):

	Getting started [https://github.com/minerva-ml/steppy-examples/blob/master/tutorials/1-getting-started.ipynb]

	Steps with multiple inputs [https://github.com/minerva-ml/steppy-examples/blob/master/tutorials/2-multi-step.ipynb]

	Advanced adapters [https://github.com/minerva-ml/steppy-examples/blob/master/tutorials/3-adapter_advanced.ipynb]

	Caching and persistance [https://github.com/minerva-ml/steppy-examples/blob/master/tutorials/4-caching-persistence.ipynb]

	Steppy with Keras [https://github.com/minerva-ml/steppy-examples/blob/master/tutorials/5-steps-with-keras.ipynb]

Feature Requests

Please send us your ideas on how to improve steppy library! We are
looking for your comments here: Feature
requests [https://github.com/minerva-ml/steppy/issues].

Roadmap

At this point steppy is early-stage library heavily
tested on multiple machine learning challenges
(data-science-bowl [https://github.com/minerva-ml/open-solution-data-science-bowl-2018],
toxic-comment-classification-challenge [https://github.com/minerva-ml/open-solution-toxic-comments],
mapping-challenge [https://github.com/minerva-ml/open-solution-mapping-challenge])
and educational projects
(minerva-advanced-data-scientific-training [https://github.com/minerva-ml/minerva-training-materials]).

We are developing steppy towards practical tool for data
scientists who can run their experiments easily and change their
pipelines with just few manipulations in the code.

Related projects

We are also building
steppy-toolkit [https://github.com/minerva-ml/steppy-toolkit], a
collection of high quality implementations of the top deep learning
architectures -> all of them with the same, intuitive interface.

Contributing

You are welcome to contribute to the Steppy library. Please check
CONTRIBUTING [https://github.com/minerva-ml/steppy/blob/master/CONTRIBUTING.md]
for more information.

Terms of use

Steppy is
MIT-licesed [https://github.com/minerva-ml/steppy/blob/master/LICENSE].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 steppy	

 	
 	
 steppy.adapter	

 	
 	
 steppy.base	

 	
 	
 steppy.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | U

A

 	
 	adapt() (steppy.adapter.Adapter method)

 	Adapter (class in steppy.adapter)

 	adapter (steppy.base.Step attribute)

 	
 	AdapterError

 	adapting_recipes (steppy.adapter.Adapter attribute)

 	all_steps (steppy.base.Step attribute)

B

 	
 	BaseTransformer (class in steppy.base)

C

 	
 	cache_output (steppy.base.Step attribute)

 	
 	clean_cache() (steppy.base.Step method)

D

 	
 	display_pipeline() (in module steppy.utils)

E

 	
 	E (class in steppy.adapter)

 	
 	experiment_directory (steppy.base.Step attribute)

F

 	
 	fit() (steppy.base.BaseTransformer method)

 	fit_transform() (steppy.base.BaseTransformer method)

 	(steppy.base.Step method)

 	
 	force_fitting (steppy.base.Step attribute)

G

 	
 	get_logger() (in module steppy.utils)

 	
 	get_step() (steppy.base.Step method)

I

 	
 	IdentityOperation (class in steppy.base)

 	initialize_logger() (in module steppy.utils)

 	
 	input_data (steppy.base.Step attribute)

 	input_name (steppy.adapter.E attribute)

 	input_steps (steppy.base.Step attribute)

K

 	
 	key (steppy.adapter.E attribute)

L

 	
 	load() (steppy.base.BaseTransformer method)

 	
 	load_persisted_output (steppy.base.Step attribute)

M

 	
 	make_transformer() (in module steppy.base)

N

 	
 	name (steppy.base.Step attribute)

O

 	
 	output_is_cached (steppy.base.Step attribute)

 	
 	output_is_persisted (steppy.base.Step attribute)

P

 	
 	persist() (steppy.base.BaseTransformer method)

 	persist_as_png() (in module steppy.utils)

 	
 	persist_output (steppy.base.Step attribute)

 	persist_pipeline_diagram() (steppy.base.Step method)

 	persist_upstream_pipeline_structure (steppy.base.Step attribute)

S

 	
 	Step (class in steppy.base)

 	steppy.adapter (module)

 	
 	steppy.base (module)

 	steppy.utils (module)

 	StepsError

T

 	
 	transform() (steppy.base.BaseTransformer method)

 	(steppy.base.IdentityOperation method)

 	(steppy.base.Step method)

 	
 	transformer (steppy.base.Step attribute)

 	transformer_is_cached (steppy.base.Step attribute)

U

 	
 	upstream_pipeline_structure (steppy.base.Step attribute)

steppy

	steppy package
	steppy.adapter module

	steppy.base module

	steppy.utils module

steppy package

steppy.adapter module

	
class steppy.adapter.Adapter(adapting_recipes: Dict[str, Any])

	Bases: object

Translates outputs from parent steps to inputs to the current step.

	
adapting_recipes

	The recipes that the adapter was initialized with.

Example

Normally Adapter is used with a Step. In the following example
RandomForestTransformer follows sklearn convention of calling arguments X and y,
however names passed to the Step are different. We use Adapter to map recieved names
to the expected names.

from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import log_loss
from steppy.base import BaseTransformer, Step
from steppy.adapter import Adapter, E

iris = load_iris()

pipeline_input = {
 'train_data': {
 'target': iris.target,
 'data': iris.data
 }
}

class RandomForestTransformer(BaseTransformer):
 def __init__(self, random_state=None):
 self.estimator = RandomForestClassifier(random_state=random_state)

 def fit(self, X, y):
 self.estimator.fit(X, y)
 return self

 def transform(self, X, **kwargs):
 y_proba = self.estimator.predict_proba(X)
 return {'y_proba': y_proba}

random_forest = Step(
 name="random_forest",
 transformer=RandomForestTransformer(),
 input_data=['train_data'],
 adapter=Adapter({
 'X': E('train_data', 'data'),
 'y': E('train_data', 'target')
 }),
 experiment_directory='./working_dir'
)

result = random_forest.fit_transform(pipeline_input)
print(log_loss(y_true=iris.target, y_pred=result['y_proba']))

	
adapt(all_ouputs: Dict[str, Dict[str, Any]]) → Dict[str, Any]

	Adapt inputs for the transformer included in the step.

	Parameters

	all_ouputs – Dict of outputs from parent steps. The keys should
match the names of these steps and the values should be their
respective outputs.

	Returns

	Dictionary with the same keys as adapting_recipes and values
constructed according to the respective recipes.

	
exception steppy.adapter.AdapterError

	Bases: Exception

	
class steppy.adapter.E(input_name, key)

	Bases: tuple

	
input_name

	Alias for field number 0

	
key

	Alias for field number 1

steppy.base module

	
class steppy.base.BaseTransformer

	Bases: object

Abstraction on two level fit and transform execution.

Base transformer is an abstraction strongly inspired by the sklearn.Transformer and
sklearn.Estimator. Two main concepts are:

1. Every action that can be performed on data (transformation, model training) can be
performed in two steps: fitting (where trainable parameters are estimated) and transforming
(where previously estimated parameters are used to transform the data into desired state).

2. Every transformer knows how it should be persisted and loaded (especially useful when
working with Keras/Pytorch and Sklearn) in one pipeline.

	
fit(*args, **kwargs)

	Performs estimation of trainable parameters.

All model estimations with sklearn, keras, pytorch models as well as some preprocessing
techniques (normalization) estimate parameters based on data (training data).
Those parameters are trained during fit execution and are persisted for the future.
Only the estimation logic, nothing else.

	Parameters

	
	args – positional arguments (can be anything)

	kwargs – keyword arguments (can be anything)

	Returns

	self object

	Return type

	BaseTransformer

	
fit_transform(*args, **kwargs)

	Performs fit followed by transform.

This method simply combines fit and transform.

	Parameters

	
	args – positional arguments (can be anything)

	kwargs – keyword arguments (can be anything)

	Returns

	outputs

	Return type

	dict

	
load(filepath)

	Loads the trainable parameters of the transformer.

Specific implementation of loading persisted model parameters should be implemented here.
In case of transformers that do not learn any parameters one can leave this method as is.

	Parameters

	filepath (str) – filepath from which the transformer should be loaded

	Returns

	self instance

	Return type

	BaseTransformer

	
persist(filepath)

	Saves the trainable parameters of the transformer

Specific implementation of model parameter persistence should be implemented here.
In case of transformers that do not learn any parameters one can leave this method as is.

	Parameters

	filepath (str) – filepath where the transformer parameters should be persisted

	
transform(*args, **kwargs)

	Performs transformation of data.

All data transformation including prediction with deep learning/machine learning models
can be performed here. No parameters should be estimated in this method nor stored as
class attributes. Only the transformation logic, nothing else.

	Parameters

	
	args – positional arguments (can be anything)

	kwargs – keyword arguments (can be anything)

	Returns

	outputs

	Return type

	dict

	
class steppy.base.IdentityOperation

	Bases: steppy.base.BaseTransformer

Transformer that performs identity operation, f(x)=x.

	
transform(**kwargs)

	Performs transformation of data.

All data transformation including prediction with deep learning/machine learning models
can be performed here. No parameters should be estimated in this method nor stored as
class attributes. Only the transformation logic, nothing else.

	Parameters

	
	args – positional arguments (can be anything)

	kwargs – keyword arguments (can be anything)

	Returns

	outputs

	Return type

	dict

	
class steppy.base.Step(name, transformer, experiment_directory, input_data=None, input_steps=None, adapter=None, cache_output=False, persist_output=False, load_persisted_output=False, force_fitting=False, persist_upstream_pipeline_structure=False)

	Bases: object

Step is a building block of steppy pipelines.

It is an execution wrapper over the transformer (see BaseTransformer),
which realizes single operation on data. With Step you can:

	design multiple input/output data flows and connections between Steps.

	handle persistence and caching of transformers and intermediate results.

Step executes fit_transform method inspired by the sklearn on every step recursively
starting from the very last Step and making its way forward through the input_steps.
One can easily debug the data flow by plotting the pipeline graph
(see: persist_as_png()) or return step in a jupyter notebook cell.

	
name

	str – Step name.
Each step in a pipeline must have a unique name. This names is used to persist or cache
transformers and outputs of this Step.

	
transformer

	obj – object that inherits from BaseTransformer or Step instance.
When Step instance is passed, transformer from that Step will be copied and used to
perform transformations. It is useful when both train and valid data are passed in
one pipeline (common situation in deep learning).

	
experiment_directory

	str – path to the directory where all execution artifacts will be
stored. The following sub-directories will be created, if they were not created by
other Steps:

	transformers: transformer objects are persisted in this folder

	outputs: step output dictionaries are persisted in this folder
(if persist_output=True)

	cache: step output dictionaries are cached in this folder
(if cache_output=True).

	
input_data

	list – Elements of this list are keys in the data dictionary that is passed
to the Step’s fit_transform and transform methods.
List of str, default is empty list.

Example

data_train = {'input': {'images': X_train,
 'labels': y_train}
 }

my_step = Step(name='random_forest',
 transformer=RandomForestTransformer(),
 input_data=['input']
)

my_step.fit_transform(data_train)

data_train is dictionary where:

	keys are names of data packets,

	values are data packets, that is dictionaries that describes dataset.
In this example keys in the data packet are images and labels and values
are actual data of any type.

Step.input_data takes the key from data_train (values must match!) and extracts
actual data that will be passed to the fit_transform and transform method of
the self.transformer.

	
input_steps

	list – List of input Steps that the current Step uses as its input.
list of Step instances, default is empty list.
Current Step will combine outputs from input_steps and input_data using adapter.
Then pass it to the transformer methods fit_transform and transform.

Example

self.input_steps=[cnn_step, rf_step, ensemble_step, guesses_step]

Each element of the list is Step instance.

	
adapter

	obj – It renames and arranges inputs that are passed to the Transformer
(see BaseTransformer).
Default is None.
If not None, then must be an instance of the Adapter class.

Example

self.adapter=Adapter({'X': E('input', 'images'),
 'y': E('input', 'labels')}
)

Adapter simplifies the renaming and combining of inputs from multiple steps.
In this example, after the adaptation:

	X is key to the data stored under the images key

	y is key to the data stored under the labels key

where both images and labels keys comes from input
(see input_data)

	
cache_output

	bool – If True, Step output dictionary will be cached to the
<experiment_directory>/cache/<name>, when transform method of the Step transformer
is completed. If the same Step is used multiple times, transform method is invoked
only once. Further invokes simply load output from the
<experiment_directory>/cache/<name> directory.
Default False: do not cache outputs

Warning

One should always run pipeline.clean_cache() before executing
pipeline.fit_transform(data) or pipeline.transform(data)
When working with large datasets, cache might be very large.

	
persist_output

	bool – If True, persist Step output to disk under the
<experiment_directory>/outputs/<name> directory.
Default False: do not persist any files to disk.
If True then Step output dictionary will be persisted to the
<experiment_directory>/outputs/<name> directory, after transform method of the Step
transformer is completed. Step persists to disk the output after every run of the
transformer’s transform method. It means that Step overrides files. See also
load_persisted_output parameter.

Warning

When working with large datasets, cache might be very large.

	
load_persisted_output

	bool – If True, Step output dictionary already persisted to the
<experiment_directory>/cache/<name> will be loaded when Step is called.
Default False: do not load persisted output.
Useful when debugging and working with ensemble models or time consuming feature
extraction. One can easily persist already computed pieces of the pipeline and save
time by loading them instead of calculating.

Warning

Re-running the same pipeline on new data with load_persisted_output set True
may lead to errors when outputs from old data are loaded while user would expect
the pipeline to use new data instead.

	
force_fitting

	bool – If True, Step transformer will be fitted (via fit_transform)
even if <experiment_directory>/transformers/<step_name> exists.
Default False: do not force fitting of the transformer.
Helpful when one wants to use persist_output=True and load persist_output=True
on a previous Step and fit current Step multiple times. This is a typical scenario
for tuning hyperparameters for an ensemble model trained on the outputs from first
level models or a model build on features that are time consuming to compute.

	
persist_upstream_pipeline_structure

	bool – If True, the upstream pipeline structure
(with regard to the current Step) will be persisted as json file in the
experiment_directory.
Default False: do not persist upstream pipeline structure.

	
all_steps

	Build dictionary with all Step instances that are upstream to self.

	Returns

	dictionary where keys are Step names (str) and values are Step
instances (obj)

	Return type

	all_steps (dict)

	
clean_cache()

	Removes everything from the directory <experiment_directory>/cache.

	
fit_transform(data)

	Fit the model and transform data or load already processed data.

Loads cached or persisted outputs or adapts data for the current transformer and
executes transformer.fit_transform.

	Parameters

	data (dict) – data dictionary with keys as input names and values as dictionaries of
key-value pairs that can be passed to the self.transformer.fit_transform method.
Example:

data = {'input_1': {'X': X,
 'y': y},
 'input_2': {'X': X,
 'y': y}
 }

	Returns

	Step outputs from the self.transformer.fit_transform method

	Return type

	dict

	
get_step(name)

	Extracts step by name from the pipeline.

Extracted step is a fully functional pipeline as well.
This method can be used to port parts of the pipeline between problems.

	Parameters

	name (str) – name of the step to be fetched

	Returns

	extracted step

	Return type

	Step (obj)

	
output_is_cached

	(bool) – True if step outputs exists under the <experiment_directory>/cache/<name>.
See cache_output.

	
output_is_persisted

	(bool) – True if step outputs exists under the <experiment_directory>/outputs/<name>.
See persist_output.

	
persist_pipeline_diagram(filepath)

	Creates pipeline diagram and persists it to disk as png file.

Pydot graph is created and persisted to disk as png file under the filepath directory.

	Parameters

	filepath (str) – filepath to which the png with pipeline visualization should
be persisted

	
transform(data)

	Transforms data or loads already processed data.

Loads cached persisted outputs or adapts data for the current transformer and executes
its transform method.

	Parameters

	data (dict) – data dictionary with keys as input names and values as dictionaries of
key:value pairs that can be passed to the step.transformer.fit_transform method

Example

data = {'input_1':{'X':X,
 'y':y
 },
 'input_2': {'X':X,
 'y':y
 }
 }

	Returns

	step outputs from the transformer.transform method

	Return type

	dict

	
transformer_is_cached

	(bool) – True if transformer exists under the directory
<experiment_directory>/transformers/<step_name>

	
upstream_pipeline_structure

	Build dictionary with entire upstream pipeline structure
(with regard to the current Step).

	Returns

	dictionary describing the upstream pipeline structure. It has two keys:
'edges' and 'nodes', where:

	value of 'edges' is set of tuples (input_step.name, self.name)

	value of 'nodes' is set of all step names upstream to this Step

	Return type

	dict

	
exception steppy.base.StepsError

	Bases: Exception

	
steppy.base.make_transformer(func)

	

steppy.utils module

	
steppy.utils.display_pipeline(structure_dict)

	Displays pipeline structure in the jupyter notebook.

	Parameters

	structure_dict (dict) – dict returned by
upstream_pipeline_structure().

	
steppy.utils.get_logger()

	Fetch existing steppy logger.

Example

initialize_logger()
logger = get_logger()
logger.info('My message inside pipeline')

result looks like this:

2018-06-02 12:33:48 steppy >>> My message inside pipeline

	Returns

	logger object formatted in the steppy style

	Return type

	logging.Logger

	
steppy.utils.initialize_logger()

	Initialize steppy logger.

This logger is used throughout the steppy library to report computation progress.

Example

Simple use of steppy logger:

initialize_logger()
logger = get_logger()
logger.info('My message inside pipeline')

result looks like this:

2018-06-02 12:33:48 steppy >>> My message inside pipeline

	Returns

	logger object formatted in the steppy style

	Return type

	logging.Logger

	
steppy.utils.persist_as_png(structure_dict, filepath)

	Saves pipeline diagram to disk as png file.

	Parameters

	
	structure_dict (dict) – dict returned by
upstream_pipeline_structure()

	filepath (str) – filepath to which the png with pipeline visualization should be persisted

 nav.xhtml

 Table of Contents

 		
 Welcome to steppy

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

